Examining the Mechanics of Microtubule Networks

Su Mo Tu We Th Fr Sa
31 1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 1 2 3 4
Date/Time:Thursday, 29 Jan 2015 from 4:10 pm to 5:00 pm
Location:Physics 0003
Phone:515-294-5441
Channel:College of Liberal Arts and Sciences
Actions:Download iCal/vCal | Email Reminder
Scott Forth The Rockefeller University

ABSTRACT: Cells utilize dynamic biopolymer networks to carry out mechanical tasks during diverse processes such as cell division, migration, and development. For example, the microtubule-based mitotic spindle performs the physical work of segregating duplicated chromosomes into two daughter cells. The components that make up these networks are not typically at equilibrium, but instead operate under load. The mitotic spindle achieves a 'steady state' size and shape despite the components that make up the dense network undergoing constant motion, experiencing large forces, and turning over on rapid timescales. It has been challenging to understand how the forces that move microtubules and chromatin are regulated within these micron-sized dynamic networks by groups of diverse nanometer-sized proteins. Dr. Forth will present his postdoctoral work that directly addresses these problems by employing single molecule biophysical methods, including optical trapping and TIRF microscopy. His work reveals that proteins involved in cell division can generate frictional resistance as they move along microtubules, and that this friction can be harnessed within spindles to help ensure successful DNA segregation. Additionally, he has shown that motor proteins that push microtubules can generate forces that are regulated by micron-scale geometric features, such as microtubule overlap length. Together these results help us link the biophysical properties of essential proteins with their function in dividing cells.

BIO: Dr. Forth received his Ph.D. in physics from Cornell University, where he was a member of Michelle Wang's lab. He is currently a post-doc at Rockefeller University, working in the laboratory of Chemistry and Cell Biology under the supervision of Tarun Kapoor. He has been the recipient of an NIH NRSA post-doctoral fellowship.