Leaving Flatland: New Venues for Strongly Correlated Electronic Fluids

Su Mo Tu We Th Fr Sa
25 26 27 28 29 1 2
3 4 5 6 7 8 9
10 11 12 13 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30
31 1 2 3 4 5 6
Date/Time:Tuesday, 09 Apr 2019 from 4:10 pm to 5:00 pm
Location:Phys 0003
Phone:515-294-5441
Channel:College of Liberal Arts and Sciences
Actions:Download iCal/vCal | Email Reminder
Dr. Jorn Venderbos, University of Pennsylvania

Abstract: Topological materials are a new class of quantum materials with remarkable properties, which are rooted in the topology of the ground state wave function. Our understanding of topological electronic phases, in particular free fermion phases, relies on one of the central paradigms of modern electron band theory: the notion of a band inversion. In this talk I will first review what a band inversion is, and then describe our attempt to construct a many-body generalization of the band inversion transition, providing a new perspective for interacting topological phases. In particular, I will introduce a special class of band inversions in two dimensions for which interactions are expected to determine the fate of the transition and present evidence that these provide promising venues for a strongly correlated fractionalized fluid of electrons and holes. I will describe possible routes to material realizations and will discuss connections to new types of topological semimetals in three dimensions as well as superconductors.

Bio: Jörn is a postdoctoral scholar at the University of Pennsylvania, where he works with Charles Kane, Gene Mele, and Andrew Rappe. He obtained his PhD from Leiden University in the Netherlands under the supervision of Jeroen van den Brink. Following his doctoral studies, he moved to MIT to work with Liang Fu, supported by a Rubicon Fellowship. His research focuses on the fundamental properties of topological quantum materials, with a special emphasis on materials which exhibit strong electronic correlation.