A Tale of Two States: The Complex Relationship between Superconductivity and Magnetism in Quantum Materials

Su Mo Tu We Th Fr Sa
28 29 30 31 1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31
Date/Time:Monday, 22 Apr 2019 from 4:10 pm to 5:00 pm
Location:Phys 0003
Actions:Download iCal/vCal | Email Reminder
Prof. Rafael Fernandes, University of Minnesota

Abstract: Much of our current technology was enabled by our understanding of semiconductors, whose electrons behave collectively in a similar way as how an individual electron does. In contrast, a hallmark of quantum materials is the emergence of unusual collective electronic behaviors that give rise to fascinating phenomena with unique potential for novel applications. A posterchild is the phenomenon of high-temperature superconductivity, by which materials carry electric currents without dissipation at relatively high temperatures. An important clue to elucidate this highly debated state of matter comes from the observation that it tends to appear in close proximity to the very different phenomenon of magnetism. These two states seem to live a love-hate relationship, displaying a mixture of competition and cooperation. In this talk, I will discuss new and exciting progress on this problem enabled by recent Quantum Monte Carlo simulations of an effective low-energy model.

Bio: I received my PhD from the State University of Campinas, Brazil, in 2008. I was then a postdoc at Ames Lab from 2008 to 2011 and a joint postdoc at Columbia University/Los Alamos National Lab from 2011 to 2012. I joined the University of Minnesota as an Assistant Professor in 2012, and became an Associate Professor in 2017. My main research activities are in theoretical condensed matter physics, with emphasis on strongly correlated electronic many-body systems.