2D Materials Plasmons: Physics and Applications

Su Mo Tu We Th Fr Sa
26 27 28 29 30 31 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
Date/Time:Monday, 24 Feb 2020 from 4:10 pm to 5:00 pm
Location:Phys 0005
Phone:515-294-5441
Channel:College of Liberal Arts and Sciences
Actions:Download iCal/vCal | Email Reminder
Dr. Tony Low, University of Minnesota

Abstract: Recent years have observed a plethora of strong dipole type polaritonic excitations in 2D materials owing to the reduced screening. These polaritons can be sustained as electromagnetic modes at the interface between a positive and negative permittivity material. In this talk, I will discuss our recent efforts in understanding plasmons behavior in various 2D materials, such as graphene, black phosphorus, and transition metal dichalcogenides, and how these systems can also exhibit rich transport behavior, such as hyperbolic rays, non-reciprocal chiral propagation, time reversal of waves and coupling of light spin to induce one-way propagation. Lastly, I will discuss key applications where graphene plasmonics are uniquely suited; graphene for the manipulation of mid-infrared beam, and gas and biosensing. .

Biography: Tony Low is an associate professor and leads the theory & computational group at the department of Electrical & Computer Engineering at the University of Minnesota. Prior to this, Low worked as a research scientist at Columbia University and IBM Thomas J. Watson Research. While at IBM, from 2011-2014, Low served as an industry liaison to various Universities under the Semiconductor Research Consortium & National Science Foundation, with the goal of finding the next electronics switch. He obtained his doctoral degree from the National University of Singapore in 2008, and then a postdoctoral associate at Purdue University. Low received the McKnight Presidential Fellowship (2019), IBM Pat Goldberg Memorial Award (2014), and the IBM Invention Award (2013).